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Dimensions and Waiting Times for Gibbs Measures
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For shifts of finite type, we relate the waiting time between two different orbits,
one chosen according to an ergodic measure, the other according to a Gibbs
measure, to Billingsley dimensions of generic sets. This is achieved by computing
Billingsley dimensions of saturated sets in terms of a relative entropy which
satisfies a pointwise ergodic result. As a by-product, a similar result is obtained
for match lengths that are dual quantities of waiting times.

KEY WORDS: Gibbs measure; thermodynamic formalism; recurrence; waiting
time; relative entropy; Hausdorff dimension; Billingsley dimension.

1. INTRODUCTION AND SET-UP

The concept of waiting-time we deal with in the present work as well as a
related recurrence-time concept was introduced by Wyner and Ziv.®
Ornstein and Weiss proved in ref. 5 a characterization of the metric
entropy /h(u) of an ergodic measure u in terms of recurrence times: if R, is
the first time at which the first n symbols of a sequence appear again, then
they proved that (1/n) log R, converges to h(u), u-almost everywhere. One
can expect a similar result for the waiting time W, (see Section 4 for a
precise definition), that is the time needed before the n first symbols of a
sequence appear in another sequence picked independently with the same
ergodic measure. Shields® provided a counter-example to show that in the
general ergodic case we do not have (1/n) log W, — h(u). He proved this
result when u is weak and very weak Bernoulli.®

A natural question arises: what does happen when one picks the
second sequence with a different measure from the first one. One expect
this waiting time to be generally asymptotically much longer. We show that
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one gets the entropy divided by a suitable dimension of a set of generic
points.

This dimension appeared naturally as an extension of Hausdorff
dimension in the context of sets of real numbers characterized by digit
properties of their g-adic representations (see ref. 1 and ref. therein). These
sets are typical examples of saturated sets. In the context of dynamical
systems, typical saturated sets are sets of generic points of invariant
measures.

Our work is organised as follows. The remaining part of the present
section sets basic notations, definitions and a discussion of a strong mixing
property. Section 2 develops the notion of relative entropy, which satisfies
a pointwise ergodic Theorem, and relates it to Billingsley dimensions of
saturated sets through an explicit formula generalizing previous results.
The following section is devoted to the main results, that is the link
between asymptotic waiting times and these dimensions. As a by-product,
we deduce similar results for match lengths which is in a certain sense the
dual quantity of waiting times. The last section contains the proofs of two
intermediate results needed to establish the main results.

Shifts of Finite Type. Let o/ ={1,2,..k} be a finite set and

A=(Ay); j—1...« be an irreducible and aperiodic k x k matrix with entries
0 or 1. Define the space 2 by
Q={o={o;}2 e 4,, =1VieN}

For each n>1, define n,: Q- Q,:={1,2,.,k}". The n-cylinder deter-
mined by w is written as [x,.w], sometimes [, ---w,]. The collection of
all cylinders generates the Borel o-algebra .

For a fixed 0 <a <1, define the usual metric d, on 2 by

dife, &) =

max{neN:zn, w=mn,.¢} if w#¢
+ oo if w=¢

where (o, &) ={
We denote the shift on 2 by 7

(Tw);=w;,,, Yo

S will denote the g-algebra of T-invariant Borel sets of Q2 and .4 the set
of all T-invariant Borel probability measures on Q.
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Saturated Sets. For any we(, let 4(w) be the set of accumula-
tion points (w.r.t. the weak* topology) of the sequence of empirical
measures

Z Tiw

:\'—‘

where d,,(B)=1ifwe B, 0 if w ¢ B. 4(w) is a non-empty compact connected
subset of .#;. One defines an equivalence relation on Q, by setting:

V(w, w') e Q2 xQ, o~ < Aw)=4w) (1)

The subset M of Q is said to be saturated if it is saturated in the class of
the equivalence relation ~. For every H = .4y, let us denote by V(H) :=
{w:A(w)=H}. The so-called smallest saturated sets are of the form
VA(w) for some we ie., the equivalence class of w. The set G(v) of
generic points of any 7-invariant measure v provides the simplest example
of smallest saturated set. Recall that

GOr) = {weR: Aw) = {1}

with v(G(v)) =1 if, and only if, v is ergodic. If not, v(G(v)) =0.

Thermodynamic Formalism (See ref 6 for details). Let Z, :=
Z.(Q) the space of Hoélder continuous functions on 2 (w.r.t. d,) and define
the norm on %, by setting

gl =lgllo+ gl

where ||g| ., is the supremum norm on the set of continuous functions %(£2)
and |/g||, is the constant:

var, (g)
el=sup {28 >0

with var,(g) =sup {|g(w)— g(&)| : n,.0=mr,.E}.
For ¢ e 7, define the Ruelle-Perron-Frobenius operator & = %,,:
E(Q)— €(Q2) by

Lflw)= 3} " f(w)

o To'=w
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We assume that
Zl1=1 (2)

that is ¢ is a normalised potential. If not, one can always obtain (2) by
replacing ¢ with ¢'=¢ +1logh—log(h-T)— P(¢p), where P(¢) is the
topological pressure of ¢ and / the eigenfunction of ¥ corresponding to
the maximal eigenvalue e”?). Hence hypothesis (2) can be made without
loss of generality.

Let u, be the Gibbs measure for the potential ¢. In this setting, this
measure is also the equilibrium state that is to say it satisfies the following
variational principle,

P(p)=h(pt,) + [ ¢ du, =0 (3)

where /(u,) is the (metric) entropy of u,. P(¢)=0 follows from assump-
tion (2) and A(u,) > 0.

A Strong Mixing Property. Let (X, %, T, 1) a dynamical system,
2 a finite or countable partition of X. As usually, we write 2, :=
V44 T~/2 for the dynamical refinement of order k of the partition 2 and
denote by o(2,) the g-algebra generated by 2,.

The partition 2 is said to be ¥-mixing with speed ¥ if the sequence

Y(n) :=sup sup ’,u(RmS)
n):= —_—
k1  Reo(2) u(R) u(S)

SeT—(nthg,

1], Yn=>1

is such that lim,, _, ., ¥(n)=0. It is easy to check that the ¥-mixing implies
weak-Bernoulli.

Lemma 1.1. If u, is a Gibbs measure with ¢ a Holder continuous
function, then the partition consisting in one-cylinders [j], j=1,..,k is
exponentially Y-mixing.

We give the proof for the sake of completness. In fact, this strong
mixing property remains valid when the potential is of summable varia-
tions, that is if >.°° , var,(¢) < co. Moreover, the normalisation procedure
can again be applied.
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Proof. Take A€%,, Be%, Then

f (AT "+0pB) ‘

1
S 1A 1,(B) | 2 gt ) ds,
1 1L x4l >
S ) 1 <o (12l
Sy 1L e D)o < <ﬂ¢(A) N

where 0<0<1 is the spectral radius of . But (| %%y, [/u,(A4)) is
bounded for any & (see ref. 6). ||

2. RELATIVE ENTROPY AND BILLINGSLEY DIMENSIONS OF
SATURATED SETS

To ease notations we set u for u,, in this section.

2.1. Relative Entropy and Information

Let y be the g-algebra generated by one-cylinders [ j], j=1,...,, k. Then
for a probability measure p on 2 define the information of 7" w.r.t. y
given 4:

Ip(w) (V|T ') w :_Z 7[;] 10gp[i|T_lco]

where p[i| T 'w] is obtained as the limit almost everywhere of the prob-
ability distribution on the alphabet .o7:

poli| T-'0] —Mw([i]wm)(w)
plo; - w,]

(the limit exists by the Increasing Martingale Theorem). The information
is defined in such a way that h(p)=| 1, dp.

Suppose now that u:=pu, a normahzed Gibbs measure. Define, for
any n>1,

ulm,. o]

e E— o
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that is the information w.r.t. the g-algebra formed from n-cylinders. The
function ¢,: Q2—-> R such that ¢,(o):=u[=z, o]/ulr,_;.To] -clearly
defines an Holder continuous potential which depends only on the n first
symbols of w. The unique Gibbs measure associated to ¢, is called the
n-step Markov approximation of u, because u, converges weakly to u,,.
We have the following Lemma:

Lemma 2.1. If u:=pu, is a normalized Gibbs measure, then I},
uniformly converges to —¢ in the uniform norm as n goes to infinity.

The proof is easy (see ref. 6 for instance). Consequently, we can define
the canonical information of u:

Definition 2.2. The continuous realisation of 7, is called the
canonical information of u: I}, := — ¢.

Before stating the next proposition, we introduce the notion of relative
entropy.

Let # and u be two T-invariant measures on €. If u is supported by
Q then,

)= [log T o) = ¥ ataltog S (4

aeQ, [ ]

Definition 2.3. The relative entropy of # with respect to u is the
positive quantity

1
h(n | p) :=lim sup;Hn(n | 1) (5)

n— +oo

Proposition 2.4. Let u=pu, be a Gibbs measure and 7 a
T-invariant measure. Then

(1) lim,_, ,—(1/n)log(n[xr, w]/ulr, w])=E;, -1, | Ir)(w) n-ae.
and is an element of L'(5).

(2) h(nlpw) = I;—1,)dn.

Proof. (1) Let u, the n-step Markov approximation of . If follows
from the definition of /;, that log u[7,.0] = Seze IflnikH(Tka)). Therefore,

ln—l n—1

1
Y I(T o)+~ logu[m,.w]| < Z =15, |l
n .o n
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Lemma (2.1) and Cesaro Lemma both imply:

lim <1 Sl I8(T ) + ilogu[nn.w]>=0 6)

n— +oo I’Zk 0

For any T-invariant measure #, Birkhoff ergodic Theorem ensures that:

n—1

1
lim = Y I(T*0)=E| /7)(o) n-a.e. and is a element of L'(#)

n— +oo N
+ k=0 (7)
By Shannon—McMillan Theorem:

1
lim ;log nin,.w]=KEI, | #r)(®w)  n-ae. and is a element of L'(y)
n— + oo
(8)

Combining (6), (7), (8), one gets assertion (1).

(2) Using (5), one can deduce from the pointwise convergence given
in Statement (1) that

nin, «] . .
b ) =timsup - J1og P2 o) = [ 1, | gy = [ 51
|
Corollary 2.5. If 5 is ergodic and u as in Proposition 2.4, then
[7,.o]
tim —1og 2~y | ) = [ dy — ) e
n— oo [nnw]

The proof of Corollary 2.5 is immediate by #-integration. (Remark that if
4 is not normalised, then A(n |,u)=P((p)—§ @ dyn—h(n).) It is clear that
h(p | ) =0, but in general, A(y |u) =0 does not implies # = u. However, if
1 1s a Gibbs measure, the variational principle (3) immediately implies that
h(n |n)=0 if, and only if, # =pu.

This corollary suggests that there is an exponential splitting of Poincaré
recurrences for orbits that are generic for different ergodic measures. The
notion of waiting time can be seen as a rigourous way of making precise
this rough idea.

2.2. Billingsley Dimensions of Saturated Sets

We define Billingsley dimensions by means of a Caratheodory con-
struction (see ref. 7 for more details about Caratheodory constructions).
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Given an arbitrary nonatomic probability measure x on 2, a Borel set
M < Q and a strictly positive number ¢, %Z,(M ) is by definition the set of
all covers of M with cylinders of u-measure less than ¢ For fe[0, 1],
define

HA(M; p):= inf Y u(c)?

Re®(M) 'Tn
Since the map ¢ HA(M; i) is monotone, we set:

HA(M; p) := lim HA(M; p)

a—0+

It is easy to check that by construction:
p<pB  and HAM;u)<owo=H(M;u)=0
p<pB  and  HF(M;u)>0=HAM;u)=

This leads to the following definition:

Definition 2.6. Let x4 be a non-atomic probability measure on 0,
M an arbitrary Borel subset of @ and HA(M; 1) defined above. Then the
Billingsley dimension of M w.r.t. u is

dim, M :=inf{ [0, 1]: H#(M; ) =0}
=sup { e [0, 1]: HA(M; u) = o0}

Remark that if (2, 7') is the full shift and A the Parry measure (the
unique measure of maximal entropy), then dim, is nothing but the usual
Hausdorff dimension. (Take o=k ', where a gives the distance d, on Q of
Section 1, k is the cardinal of the alphabet .<7.)

For two given probability measures ¢ and » on £, define the
singularity function of # with respect to u by setting

1 .
Voe@, (w):=lim inf 28?1

=0
U n—+ow logu[m,.w] (20)

with the classical conventions for the undertemined ratios of the form
log(x)/log(y). If u is non-atomic, then it is proved in ref. 1 that for every
subset M of Q,

dim, M = inf sup {n(a)):weM}
7 M
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where the infimum is taken over all probability measures # on . Define
the quasi-metric ¢ on .#; by setting:

gq(p, ) = sup max {

weR

log & ()
n

>

log”uo)\}
u

This quasi-metric is constructed in such a way that for any Borel subset M
of Q, if u is a ¢-limit of the sequence (u,), of non-atomic probability
measures (i.e., lim, g(u, u,,) =0), then

lim dim, M =dim, M (9)

n— +oo

Notice that in general the topology induced by ¢ is not the weak* topol-
ogy. We need the following Lemma.

Lemma 2.7. Any Gibbs measure g4 on £ is the g¢-limit of the
sequence (u,), of its Markov approximations.

Proof. Fix an arbitrary w € Q2. Then there exists a strictly increasing
function 0: N — N such that:

1 .
ﬂ(w): lim Ogﬂ[na(n) ]

Hn n— log:un[nﬁ(n)'w]

where 4, is the n-step Markov approximation of 4 defined in Section 3.1.
Weak* compacity of the set of probability measures on £ implies that
the empirical measure L, (w) weakly converges to a probability measure p,,.
It is well-known (see ref. 6 for instance) that there exists a constant
C >0 such that for all k>1,

O(k)—1 ) O(k)—1 ]
C‘lexp<— Y ¢(T’w)><ﬂ[n9(k).w]SCexp<— Y (/)(wa)>
= .

Jj= j=0

A similar inequality is valid for u, mutatis mutandis. As a consequence, we
get:
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Lemma 2.1 ensures that there exists a compact interval J < (0, + co) which
contains both p,(/}) and pw(lzn). From (10) one gets

log - ()

n

SK|po, =1 <K |1, =17 ||

Polly)
= |log F&—#2
‘ ‘ Polly,)

where K is a positive constant. We thus obtain

which concludes the proof by applying again Lemma 2.1. |

Stated in our notations, Cajar‘! proves that for a finite step Markov
measure # on Q, one has

Voe®,  dim, VA(w)= inf {h(’”} (11)
“ ned(w) 77(1;)

The next Lemma establishes the same formula for Gibbs measures.

Lemma 2.8. If i is a Gibbs measure, then

VYo e 2, dim, VA(w) = inf {

nedlw

il

Proof. Let u, be the n-step Markov approximation of the Gibbs
measure u. A simple reformulation of (11) gives for all integers n:

dim,, VA()= inf {3011 ,)} (12)

where we put y(n | w,) :=h(i7)/n(1,c) to ease notations. By Lemma 2.7, p is
g-limit of the Markov measures y,,. It follows from (9) that

dim, VA(@)= lim dim, VA(@)= lim inf {y(7],)} (13)

n— + oo n— +ow ned(w)

In addition, there exists a constant K such that for any » € .4,

| <K W~ |
a(1g) ()| et e

91 110) = (1 | )] = () ]
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which implies that p(-|u,) converges uniformly in #; to y(-|u) by
Lemma 2.1. Therefore, the following commutation of symbols arises,

lim inf {y(n|p,)} = inf { lim p(ylw,)}= inf {y(n|p)}
nedw) ned(w)

n— 4+ nedlw) n— +oo

and by comparison with (13), the proof is complete. ||

2.3. Relationship Between Relative Entropy and Dimensions

Proposition 2.9. Let v be a T-invariant measure and u=u, a
Gibbs measure. Then

h(v)

dim, GO = T hor )

Proof. 1t is an immediate corollary of Lemma 2.8 by taking the
saturated set G(v). ||

3. MAIN RESULTS

Let define precisely the waiting time.

Definition 3.1. For any n>1, the waiting time W,:QxQ —
N\{0} is defined as follows:

Wyw, &) =inflk>1:7, T =n,.0}

The conditional measure w.r.t. the set U of positive measure will be
denoted in the sequel by u:

_MAnU)
Uy(A): 7#((])

We can now give the main result.

Theorem 3.2. Let v be an ergodic measure, u,, Gibbs measure and

W,(w, ¢) the waiting time given by Definition 3.1. Denote by v xu, the
product measure on Q x Q. Then,
1 h
Iim —log W, (w, &)= __hv) VX fl,mae.

n—oo N _dimﬂw G(v)’
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The proof makes use of two ingredients. The first one is the proposi-
tion below, whose proof is postponed to the last section, the second one is
the ergodic result for relative entropy, that is Proposition 2.4.

Proposition 3.3. If 7 is an ergodic measure and c¢(n) a sequence of
positive constants satisfying ¥, ne =" < co, then, for n sufficiently large,

(1) log(W,(w, &) n([7m,.w]))= —c(n) for (7 xn)-almost all (w, ),

(2) if n is y-mixing, log(W,(w,<)n([n,.w]))<c(n) for (nxn)-
almost all (w, &).

From this proposition one can easily deduce the following lemma
(whose proof is also postponed to the last section):

Lemma 3.4. Let n be an ergodic measure and x,, a Gibbs measure.
Under the same hypothesis of Proposition 3.3 for the sequence of constants
c(n), one gets

—c(n) <log(W (o, &) u,([7,.@])) < c(n) for (7 x p,)-almost all (w, &)

Proof of Theorem 3.2. Choose c¢(n)=¢n, ¢ >0 arbitrary, which of
course satisfies 3 ne ™ < oo. By Proposition 3.3 and Lemma 3.4, we get,
for n sufficiently large and v x u,, almost everywhere:

1 1 1 .
—e<—log W,(w, &) +—-logv[r,.w] —flogmsts
n n n " uyln, o]

Now apply Shannon—-McMillan Theorem, Corollary 2.5 and Proposition 2.9.
The desired conclusion follows from arbitrariness of ¢. ||

Remark 3.5. If the measure v of Theorem 3.2 is T-invariant but
non ergodic, it is easy to check that we get:

1
lim —log W,(w, ¢)=E(;, | /7)), VX [,-a.E.

n—->o N

Theorem 3.2 allows to interpretate the Billingsley dimension of generic sets
as a correction to entropy to get the asymptotic waiting time between two
orbits picked according to distinct ergodic measures.
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Define the dual quantity of W, as follows:

Definition 3.6. Let w, (€Q. For any m > 1, define
M (0,8 :=inf{n>1:n,0#n,0' "¢ j=1,2,..,m} (14)

So M, (w, &) is the length n of the shortest block 7,,.w of w which does
not appear in ¢ starting anywhere in 7,.£. From this definition, one
deduces easily that W, >m if, and only if, M,, <n. This property yields the
following proposition:

Proposition 3.7. Let v be an ergodic measure, u, a Gibbs
measure and M, (w, £) the matching time given by Definition 14. Denote
by v xu, the product measure on Q2 x Q. Then,

lim M, é)—dimﬂ”’ G X U -a.e
n— oo logm B h(V) ’ Y lu(ﬂ e

4. PROOF OF PROPOSITION 3.3 AND LEMMA 3.4

Proof Proposition 3.3. (1) Consider the dynamical system on
Q2 x Q equiped with the invariant measure P:=# x#. For any cylinder
[7,.®] with non-zero n-measure, we have for an arbitrary K> 1:

LK

P[n”.w]{(wa é) : Wn(wa é) <K} < Z P[nn.m]{(wa é) . Wn(w9 é) :J}
j=1
LK )
<)) n{é:in, T/ .E=n, 0}
j=1
<Kn[n, o]

The last inequality comes from the invariance of the measure #. Setting

—c(n)

e
K= (e

gives

P oil(@, &) log(W (0, &) n([n,.0])) < —c(n)} <e™
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Remark that if K= (e~ "/y([7,.0])) <1, then P, o). 1, o1 Wi, &) <K}
=0, since W,>1 by definition, so the above bound also trivially holds.
Since the previous inequality is independent of [ 7,.w], the Borel-Cantelli
lemma gives (1). Notice that only the invariance of the measure is used in
the proof, not the ergodicity.

(2) Let 6€(0, 1) be arbitrary and choose d such that ¥(d) <d. This
is always possible by Lemma 1.1. Fix an integer N, large enough so that
e“M>=2(n+d) for all n>N,. Fix n> N, and let K>2(n+d) arbitrary.
Then, for each cylinder [ x,.w] with noh-zero measure, we have:

P orl(@, &) Wy(w, &) > K}

=n{é:n,l=n,0,7,TE=7,.0,.. 7, T =1, 0}

LK/(n+d)]—1

<(1_77(|:72:na)])) l__[ ’7{{:nn.Ti("+d)§=nnw,0<i<j}
j=1

x{&:m, T+ DEstn, o}

LK/(n+d)]1—1

=(l—nlz,0]) [ (1=ng(R))

Jj=1

where
R:={¢:m, T ¢ n, 0, i=0,1,. -1} €0( L a)-a)
and
S;={¢:n, . T"*i=n, 0feT"Vr+DH+Dy,
The particular choice of d and the invariance of # both imply
s, (R;) < (1=9) n(S;) = (1 —=0) n([7,.w])
for all j, and then:

Pl wil(@,8): W0, &) >K} <(1—(1-9)n[r, 0])-H0e+D

<1 (1) ] N+
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For any n> N, let K=e“"/y[n,.w] =2(n+d). Then

P[nn.w]{(a)a é) : log( Wn(wa é) ’7[”"@]) > C(l’l)}

<5 (1= (1= 0) g, ] Wi o)
1 (1 =6) e“M)/(n+d)
<gp

where p :=sup{(1 —2)"*: 0<z<1-5}.
Since 3, ne” <o, (1/n) e —> o as n diverges, and we can
choose N, large enough to ensure that

(pA=)e W+ d) L dpe =" Yp =N,

Consequently,

~—

P ol (@, &) log(W(w, &) n([7,.0])) > c(n)}

<=ne=™. ¥nx=N,:=max(N,, N,)

SRS

Since this bound is independent of the cylinder [7,.®],

Z P[nn.w]{(wa é) : lOg( Wn(CO, é) n([nnw])) > C(n)}

n=1

2
SM+= ) ne” <o

n>N3

and the Borel-Cantelli lemma gives the desired result. So the Proposition
is now proved. |

Proof of Lemma 3.4. The proof is analogous to the proof of
Proposition 3.3 by replacing # x#n by nxu,, since the measure u, is
¥-mixing by Lemma 1.1. Notice that the x,-measure of any allowed cylin-
der is strictly positive. ||
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